Statistical Inference in Generalized Linear Mixed Models by Joint Modelling Mean and Covariance of Non-Normal Random Effects

نویسندگان

  • Yin Chen
  • Yu Fei
  • Jianxin Pan
چکیده

Generalized linear mixed models (GLMMs) are typically constructed by incorporating random effects into the linear predictor. The random effects are usually assumed to be normally distributed with mean zero and variance-covariance identity matrix. In this paper, we propose to release random effects to non-normal distributions and discuss how to model the mean and covariance structures in GLMMs simultaneously. Parameter estimation is solved by using Quasi-Monte Carlo (QMC) method through iterative Newton-Raphson (NR) algorithm very well in terms of accuracy and stabilization, which is demonstrated by real binary salamander mating data analysis and simulation studies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Estimated estimating equations: Semiparametric inference for clustered/longitudinal data

We introduce a flexible marginal modelling approach for statistical inference for clustered/longitudinal data under minimal assumptions. This estimated estimating equations (EEE) approach is semiparametric and the proposed models are fitted by quasi-likelihood regression, where the unknown marginal means are a function of the fixed-effects linear predictor with unknown smooth link, and variance...

متن کامل

Wavelet-based functional mixed models.

Increasingly, scientific studies yield functional data, in which the ideal units of observation are curves and the observed data consist of sets of curves that are sampled on a fine grid. We present new methodology that generalizes the linear mixed model to the functional mixed model framework, with model fitting done by using a Bayesian wavelet-based approach. This method is flexible, allowing...

متن کامل

A semi-parametric Bayesian approach to generalized linear mixed models.

The linear mixed effects model with normal errors is a popular model for the analysis of repeated measures and longitudinal data. The generalized linear model is useful for data that have non-normal errors but where the errors are uncorrelated. A descendant of these two models generates a model for correlated data with non-normal errors, called the generalized linear mixed model (GLMM). Frequen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015